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The three-particle term in the unitarity relation is approximated by treating 
pairs of particles as isobars. The method is applied to investigate the (33) 
resonance contribution to inelastic K-N scattering and to the model for the 
second r-N resonance proposed by one of us. 

I. INTRODUCTION 

In the last few years considerable progress has been made in utilizing the 
properties of analyticity, unitarity, and Lorentz invariance in calculating the 
two-particle scattering amplitudes. Application of these principles to ampli- 
tudes for more than two particles is still a long way from being achieved in view 
of the complications arising due to the growing number of invariants and the 
fact that the analytic properties of such amplitudes are not yet known. 

In the present work we introduce an approximation scheme to reduce the 
problem of three particles to an equivalent two-body problem. This is achieved 
by taking advantage of the observed resonances between different pairs of 
particles. The approximation scheme is quite general and as an example of its 
applications it is applied to the problem of pion-nucleon interaction above the 
inelastic threshold. Here it is assumed that the 33 resonance is in some sense 
basic and attempts are made to reproduce the higher resonances of pion-nucleon 
scattering in terms of the parameters of the 33 resonance. This is motivated 
primarily by the qualitative success of a similar approach to the problem in an 
earlier work (1). 

In Section II we introduce the approximation scheme and explain its effect on 
the exact unitarity relation with three intermediate particles. This formalism is 
then applied to pion-nucleon scattering above the inelastic threshold in Section 
III. The amplitudes are written down in an invariant way. Due to complications 
arising from spin 3/2, we find it convenient to work with helicity states. In Sec- 
tion IV we apply the formalism to the mechanism for the second resonance pro- 
posed by one of us and give approximate solutions of the integral equations of 
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FIG. 1. The production of three particles from two. 

the problem, and in Section V we discuss the results. In the Appendices we give 
derivations of the helicity amplitudes and discuss their isotopic spin dependence. 

II. APPROXIMATION TO THE UNITARITY RELATION 

In this section we give a precise meaning to the isobar model and shall show 
how, in this model, the three-particle unitarity term may be simplified. We neg- 
lect the spin complications. The results we get for spin zero particles and s-wave 
resonances have an obvious generalization which we assume to hold when spin 
is properly taken into account. Isotopic spin is also ignored for the time being. 

A. THE ISOBAR MODEL 

We consider the production of three spinless particles from two (Fig. 1) : 

1+2+4+5+6. (2.1) 

Let us suppose that, of the final particles, 4 and 5 are capable of interacting 
through an s-wave resonance. Then one expects that the amplitude for this 
process has large contributions from those cases where 4 and 5 emerge in a 
relative s-state, and therefore emerge isotropically in their center-of-mass system. 
To describe the kinematics of reaction (2.1) requires five independent scalar 
invariants. Let pl , p2, -p4 , -p5, -p6 be the four-momenta of the particles: 
we define 

Sij = (pi + pj)‘- (2.2) 

Then we may choose ~12 , s14 , $16 , 845 , ~24 as our five invariants. n’ow we consider 
the center-of-mass frame of particles 4 and 5 (Fig. 2). sh5 is the total energy of 
the particles 4 and 5; s12 and sll (together with the masses of the particles and ~4~) 
determine the configuration of the momenta pl , p2 , p6 , and s14 , s24 determine 
the direction of p4 (or p5). Accordingly, that part of the amplitude for which 
4 and 5 are in a relative s-state, is independent of ~14 and $24 . Further, one expects 
this contribution to have a resonant dependence on s45 with position and width 
corresponding to the parameters of the resonance between 4 and 5. 
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6 

FIG. 2. Production process (2.1) in the center-of-mass system of 4 and 5. 

Hence, if we can approximate the low-energy elastic scattering of 4 and 5 by 
a one-level formula : 

(5’4’ I T 145) = M2 _ $ _ s I 

87rMA 
SI = s45 , p=- 

9r 

(2.3) 

where M is the total center-of-mass energy, A the width of the resonance, and 
qr the corresponding momentum, we can write the amplitude for the process 
(2.1) as 

(654 [ T / 12) = F(s, t, ar) M2 “;; _ s + jo(a~z , . . . ,.%) 
I 

(2.4) 

s = a2, t = SIG. 

For a narrow resonance F(s, t, sl) does not vary much with sr and may, 
therefore, be replaced by a mean value F(s, t, M’), which depends only on 
the two kinematic variables s and t and is similar to an ordinary two-body 
scattering amplitude. We call it the amplitude for “isobar” production and by 
the isobar model we mean the assumption that the inelastic scattering is domi- 
nated by the isobar production term, and that the term jo(slz , . . . , s4J is in 
general small. 

In the isobar model as formulated by Sternheimer and Lindenbaum (2) it is 
assumed in addition that F(s, 1, AR*) is more or less independent of t, so that the 
cross sections may be determined by phase space modified by the resonance 
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factor (2.3). We shall show how unitarity leads to equations coupling F( s, t, ill*) 
to the elastic scattering amplitude and to other isobar scattering amplitudes. 
These make it possible in principle to calculate F(s, t, M*) . 

We can take into account similar resonances between particles (6, 5) and 
(6, 4) by approximating the amplitude for reaction (2.1) by 

(654 1 T j 12) = k$ Fds~ , ii, AL’) “” 
Mk2 - iAk - Sk 

+fds12, a.. ,sd. (2.5) 

As before the term Fo(s12 , . * * , s4J in (2.5) is small and will be dropped. 
We are interested in the three-particle intermediate states. By unitarity, the 

imaginary part of the amplitude for the elastic scattering 

1+2-+1’+2 (2.6) 

will include a term of the general form 

s 
(1’ 2’ 1 T 1456)*(654 [ T 1 12) dr (2.7) 

where the integration is taken over the phase space of particles 4, 5, and 6. 
Inserting (2.5) will involve four types of term 

s 
F;* Fk d? (2.8) 

s 
F;* F, dtkl (2.9) 

s 
(FL* Fo + F;* Fk) dqs (2.10) 

s 
F;* F,, dr (2.11) 

where we have defined certain regions of phase space 

lk : (Sk - d’!fk*)* 2 Ak2 

T&l : (Sk - i!-&*)* ? AL.‘, (s; - Ali”)” 7 A:. 

Our approximation will be to keep only terms of type (2.8). In other words 
we assume 

(a> 

and 

(b) 

1 FL* Fk dq >> /- F:* F,, dq >> 1 F;* F, dz 

/dw<<[drr. 

(2.12) 
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The condition (b) states that the region of phase space where two isobars can 
simultaneously be formed is very small. 

B. THE UNITARITY RELATION 

We define the T-matrix in terms of the S-matrix by 

(f I s I i> = (f I 9 + cw*a - 40 I 3 I i> (2.13) 

where i is the initial and f the final state and S(f - i) ensures four-momentum 
conservation. If i and f are both three-particle states then we can separate out 
from (f j 3 1 i) a number of terms which depend on one initial and one final 
momentum through a &function only. Assuming the particles to be distinct, we 
can express the three-particle s-matrix as 

(654 1 3 1 123) = &4(65 1 5 1 23) + &6(54 1 3 1 12) 

+ S,,(64 1 3 / 13) + (654 1 3’ 1 123). (2.14) 

The invariant amplitudes T are defined in terms of the matrix elements of 3 
in the usual way, 

etc., 

(54 I 3 1 12) = (16w~w~wq~g) -I”(54 1 T 1 12) 

(654 1 3 1 12) = (32~~~2w~w&-“~(654 1 T ( 12) (2.15) 

(654 1 3’ 1 123) = (64w~w2w3w~w~wg) -1’2(654 1 T I 123) 

(& = (pi2 + pi2)1’2 

where pi is the mass of the particle. 
If we confine our attention to the production of one particle only then the 

three processes 

1+2-+4+5 (2.16) 

1+2-+4+5+6 (2.17) 

1+2+3-+4+5+6 (2.18) 

are coupled by unitarity. For definiteness we take particles one and 4 as spinless 
nucleons of mass wz and particles 2, 3, 5, 6 as pions of mass ,.L This simplifies 
calculations greatly but does not change any of the essential features of our 
approximations. Then the unitarity relation for the production process (2.17), 

c (654 1 S+ 1 n)(n 1 S / 12) = 0 
n 

yields 
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where 
2 Im (654 1 T 112) = (a) + (b) + (c) + (d) + (e), (2.19) 

(,,=J&.&. 
(27f)4 (21)4 

27rs(p,i2 - m’) .2&$ - u”) . (2K)4 

+j4(Pl + pz + p5 - P7 - Ps) (2.20) 

.64(~, +PS + ~4 + pd X e(w7)O(u,) (461 T 1 78)*(785 1 ‘I’ 1 12) 

and (a)-(d) can be written down analogously from the corresponding diagrams 
in Fig. 3. Terms (a) and (b) couple the inelastic amplitude with the elastic two- 
particle and three-particle amplitudes respectively. The remaining three terms 
may be regarded as final state interaction terms. 

As discussed above we approximate the five-legged and six-legged diagrams 
by isobar production and isobar scattering terms. In this case one of the isobars 
is a pion-pion isobar of mass m, say, and is denoted by a wavy line. The other 
two isobars are pion-nucleon isobars and will be denoted by a double line. We 
write 

(654 1 T I 12) = 2 F(ab, c; 12)g(a, 6) 

summed over ab = 45, 56, 46; 

(2.21) 

(654 I T I 123) = g g W& C; de, f>da, Q@, e> (2.22) 

FIG. 3. Diagrammatic representation of right-hand side of Eq. (2.20). The vertical lines 
indicate the intermediate states summed over. 
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FIG. 4. Isobar contributions to three-particle amplitudes. 

summed over ab = 45, 56, 46; de = 12, 23, 13 (c and f in this and (2.21) being 
the remaining member of the triad), where 

P 
112 

da, b) = (ptb _ 
m$ -I- iA,b) ’ 

pab = (pa + pb> (2.22a) 

and ma6 , A, are the mass and width of the appropriate isobar. Figure 4 gives 
a graphical representation of the two terms F(45, 6; 12)g(45) and F(4, 56; 12, 
3)g( 12)g(56), contributing to (2.21) and (2.22) respectively. 

We now substitute (2.21) and (2.22) into (2.20) and identify the isobar con- 
tributions on both sides of the equation. We then get an equation for the imagi- 
nary part of each of the terms on the right-hand side of (2.21). We consider in 
detail only one term, say 2 Im g(56)F(4, 56; 1, 2). Diagrammatically the right- 
hand side is represented by Fig. 5 (obtained by inserting all diagrams of the 
type illustrated in Fig. 4 into the appropriate part of Fig. 3). 

All these diagrams have in common the final state pion-pion interaction. The 
integration occurring in the diagram of Fig. 5(a) can be carried out and it con- 
tributes a term which is canceled out by the corresponding term in 2 Im g(65) 
F( 65, 4; 1, 2) on the left. Within our approximat’ions (conditions (2.12) (a), 
(b) ) the contributions from diagrams of Fig. 5 (b) , (d) , (e) and (f) may be 
neglected. Finally the integrations in (g) and (h) reduce t,o the two-particle 
unitarity integral with appropriate factors of (2x)-‘, taking into account the 
identity of the two pions. Thus we obtain 

2 Im F(65,4; 1,2) = &z /” d4p, d4pg F(65, 4; 7, 8)h*(8, 7; 1, 2) 

X -9(w)O(w~)6(p72 - m2)6(p82 - 14’) 

+&S 
d4p,, d”pg F(65,4; 78, 9)F*(9, 78; 1, 2) 

x e(w78)e(w&(& - M2MP92 - P2> 

+&S 
d4p,, d4p, F(65,4; 7, 98)F*(98, 7; 1, 2) 

x e(~gg)e(~7)6(p~s - m%(~72 - m’) 

(2.23) 
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(b) 6 

FIG. 5. Unitarity diagrams for the amplitude g(56)F(4,56;1,2) 

where h(7, 8: 1, 2) is the n-N elastic amplitude. Similarly it can be shown that 

2 Im F(6,45; 1,2) = & / d4p7 d”ps F(6,45; 7, 8)h*(8, 7; 1, 2) 

x e(w7)e(w&$p7r2 - dMPs2 - CL21 

+&I d4p,, d4p, F(6,45; 78, 9)F*(9, 78; 1,2) 
(2.24) 

x e(w?s)e(wg)8(p?28 - km1392 - /.a 

d4pg8 d4p, F(6, 45; 7, 98)F*(98, 7; 12) 

x B(w~&(w~)~(P~~ - nt%(~7~ - m”> 

The last two equations are the usual unitarity relations for the isobar produc- 
tion amplitudes expressed in terms of themselves and the pion-nucleon and the 
pion-isobar scattering amplitudes. 

We can also treat the three-body scattering process (2.18) in a similar way, 
except that its unitarity relation contains extra pole terms corresponding to the 
diagrams of Fig. 6. 
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faj Cbl 
FIG. 6. Single-particle contributions to the unitarity relations for three-particle amplitudes. 

It might seem at first sight that the contributions of Fig. 6 violate our condi- 
tion (2.12) (b) on the nonoverlapping of isobar dominated phase space regions, 
which forbids Fig. 5(d), for example. However, the distinction can be seen from 
the fact that there is no integration involved over the pion variables in Fig. 6(a). 

III. PION-NUCLEON INTERACTION ABOVE INELASTIC THRESHOLD 

We now apply the approximation scheme of the last section to pion-nucleon 
scattering above the inelastic threshold. Attempts have been made to explain 
the various features of pion-nucleon cross sections in terms of the so-called 
“isobar model” (.9,3). In this model it is assumed that the nucleon and one of 
the final state mesons always emerge in the relative resonant 33 state. If one 
considers the production of only one meson in the final state this configuration 
can account for the angular momenta and parities of the second and third 
resonances of pion-nucleon cross sections. Other analyses (4, 5) also indicate 
that the final state described by the 33 isobar plays an important role in pion- 
nucleon interactions above the inelastic threshold. But so far there has been 
little quantitative discussion or explanation of the resonant peaks. In an earlier 
work (1) it has been suggested that such a simple model might give a quantita- 
tive description of the higher resonances. Therefore, ir is considered worthwhile 
to investigate the problem in detail. 

Ball and Frazer (6) proposed a different explanation for the second resonance 
of pion-nucleon scattering in which the principal mechanism is the production 
of the pion-pion (J = 1, I = 1) resonance. In our approximation scheme there 
is scope for the inclusion of such resonances as well, but in the following con- 
siderations we shall not take into account the contributions of the pion-pion 
resonance. 

We denote the 33 isobar by N*. The processes we are interested in are (Fig. 7) 

x+N-t?r+N* (1) 

a + N* + T + N*. (11) 
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FIG. 7. Processes (I) and (II) 

We write down some of the usual kinematical relations which we shall use 
very often. 

s = (41 + q2y = (qs + qd2 

t = (n1 + q$ = (q2 + cd2 (3.1) 

7.4 = (q1 + q4)2 = (q2” + qd2. 

In the center-of-mass system 

s = w2 = (E, + u,)” = (E,’ + co,‘)” 

t = m2 + M* - 2E,E,’ + 2qq’ cos 8 (3.2) 

u = m2 + /A2 - 2E,w,’ - 2qq’ cos e 

where e is the scattering angle and E, , E,’ the energies of the incoming nucleon 
of mass m and the outgoing isobar of mass M, defined by 

E, = ( q2 + m2)1’2, E,’ = (q12 + &f2)l”. (3.3) 

q and q’ are the incoming and outgoing momenta. The incoming and outgoing 
meson energies are 

uq = (q2 + P2Y2, cd*’ = (q’2 + p2p2. (3.4) 

Similar relations hold also for the process (II), in which case the magnitudes 
of the incoming and outgoing momenta in the center-of-mass system are the 
same and will be denoted by p. 

A. SPIN DESCRIPTION OF THE ISOBAR 

A convenient way of describing a spin 35 particle is the Rarita and Schwinger 
(9) wave equation: 

(r.k - M)hcx(k) = 0 (3.5) 
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where k is the four-momentum of the isobar and the wave function #h,(k) is 
a 16-component entity with X as a four vector index and cy as a four spinor index. 
It is subject to the subsidiary conditions 

k.J, = 0 

y.$ = 0 
(3.6) 

which cut down the number of independent components of $J to eight. We 
multiply # by y5 in order that y& should describe a particle having the same 
transformation properties under reflection as the isobar. 

We now calculate the coupling G of the isobar with a nucleon and a meson 
from the given parameters of the 33 resonance of pion-nucleon scattering. ?;ear 
this resonance the pion-nucleon scattering amplitude has its sole contribution 
from the diagram of Fig. 8. 

On denoting the nucleon spinor by u(p) the amplitude A corresponding to 
Fig. 8 may be written as 

A = 2~~9 c a( -~‘ka’ih(K)IC’,(K)qp 4~) 
K2 - M2 + iA 

2MG% --p’)qx’6xfi qr u(p) 
(3.7) 

zz 
K2 - M2 + ih 

where A is the width of the 33 resonance and 6x,, the projection operator given by 

6x, = ; 
4Kx K, 

36x/l - -jp- - -0 Yr 

+ yx r.KK,, + Kx r.Kr, 
M” 

)(7x; iv). (3.8) 

The expression (3.8) projects out only the positive energy state from the isobar 
wave function $x,(K). The amplitude A has a contribution only from the 
J = 38, L = 1 state. Comparing it with the standard one-level resonance formula 
for t,he 33 resonance we get 

24?rMA 
G2 = [(M + m)’ - pz]qr3 ’ (3.9) 

where qr is the momentum corresponding to the 33 resonance. 

B. INVARIANT AMPLITUDES 

We now find out the independent invariant amplitudes which are necessary 
to describe the processes (I) and (II), For convenience we define the following 
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FIG. 8. Isobar approximation of pion-nucleon scattering. 

quantities 

Q = 35(cr2 - a41 

f( = %(q2 + q4) 

P = Sh(q1 - qd 

(3.10) 

To begin with (I), we first observe that for a given angular momentum J, 

the possible transitions (labeled by initial and final orbital angular momentum) 
are J f $5 -+ J f $6, J F 95, so that four amplitudes are required to describe 
the process (I). The amplitude (TN* 1 T ( nN) has the structure of an invariant 
matrix %&!k,o,+ in spin space such that $&qa) m~,,,u,(q~) is a spin scalar. A 
suitable choice’ for S?& is 

mi = (A, + r.QBdQx + (A2 + 7.QB2)& (3.11) 

where the spinor indices are suppressed. The possibility of using y, q1 and q? 
or any other combination of them in Eq. (3.11) is ruled out by the Dirac equa- 
tion and Eqs. (3.5) and (3.6). Apart from their isotopic spin dependence Ai 
and Bi are invariant scalar functions of the kinematic variables s, t, and u de- 
fmed by Eq. (3.1). 

Further, the matrix elements of ‘XZh have certain analytic properties and we 
can show that the choice (3.11) introduces no additional kinematic singularities. 
This latter statement can be verified by taking traces of XX between the sub- 
spaces spanned by nucleon and isobar wave functions and inverting the relation 
between the values of the traces and Ai and B< . Four such possible traces are 

1 This choice is similar to that of A. W. Hendry (Glasgow University, Department of 
Natural Philosophy Preprint). 
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The determinant from such an inversion has the value 

(Ky4[(P.Q)* - P2Qq4 

which is zero only for forward and backward scattering. But the numerator 
of this inverted relation also has zeros for forward and backward scattering. 
Hence it is shown that no additional kinematic singularities are introduced. 

We now consider the process (II). For a given value of the total angular 
momentum J the number of transitions from the initial r-N* system to the 
final r-N* system are 

J f s&J F 35 tf J f 3&J =F 35. 

Among the eight possible transitions time reversal invariance implies that the 
amplitudes for the transitions J + 35 + J - 35, J - f4 -+ J + 35 are equal, 
and similarly those for the transitions J + $6 + J - jig and J - 35 --+ J + >d 
are the same. Hence the number of invariant amplitudes required to describe 
the process (II) is six. 

As before [(3.10)], we can define the quantities Q, K, and P in terms of the 
four-momenta pl , pz , p3 , p4 of the process (II) and express the invariant am- 
plitude s?&, in terms of them. The possible choices are 6x,, , &A&~, KxK, , &AK,, - 
KQr and &A& + KAQ, , 0 f which the last one is ruled out by time reversal 
invariance. The remaining four can be shown to be related by 

2Kh K,( P*Q* - MT o&K*) + 2&h Q, P2K2 

8Ap = 
+ (&AK,, - Kx Q,)P”(P.Q - T.&M) (3.12) 

K2(p2Q2 - (P.Q)*) 

and hence only three of them are independent. A suitable choice for ~?7& is, 
therefore, 

mx,, = (Cl + Y.&W&~ 

+ (Cz + r.QDz) &A&, (3.13) 

+(C, + ~.&&)KA&,, . 

We believe that such a choice introduces no additional kinematic singularities. 

C. HELICITY AMPLITUDES 

We can now make the connection between the invariant amplitudes for 
processes (I) and (II) and the amplitudes in states of fixed tot’al angular mo- 
mentum. This may be done in two stages: First, relate the invariant amplitudes 
to the helicity amplitudes of Jacob and Wick (8) ; then do the partial wave 
projection of the helicity matrices. The method is the same as that used by 
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Goldberger et al. (9) for the nucleon-nucleon problem, and we give the algebraic 
details in Appendix A. 

For process (I), define the normalization of the helicity matrix @ by its con- 
nection with the center-of-mass cross section: 

(3.14) 

where CD is a function of the center-of-mass variables W and 8, and X, X’ are, 
respectively, the helicities of the incoming nucleon and outgoing isobar. Then 
define the helicity amplitudes +i and the corresponding +iJ in the state of total 
angular momentum J by 

$2 = (45 I a I 34) = $ F (2J + l)+zJ d/2 1,2(e) 

(3.15) 

The combinations of definite parity are: 

4’(% %) = $lJ f 4J4J 

+“(fh, 4%) = 42” f 43J 

where the ( +) sign is associated with parity ( - 1) ‘-“‘. 
Define 

(3.16) 

S = sin 8; c = cos 8; s = sin e/2; F = cos e/a (3.17) 

and 

Gl+ = & m+ f F2+) + (Fl- f FL)1 

G2* = g&w 01+ f F2+) - (Fl- f F,)l 
(3.18) 

where 

Fi* = fd(E4’ =F M)(E, rt m) A; + 1 ,i= 1,2 (3.19) 
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and denote by G,,& the following integrals, where 1 = J - >$, a = 1, I f 1, 
1 f 2, 

G,,+ = /‘dC(Gl+ + (-l)“-‘Gz*)P,(C). (3.20) 
-1 

Then the combinations of (3.16) are given by 

+“‘(lS / 7, “4) - 1 1(Z + 2)$ G:++z - GI+ = 
2 21 + 3 

+ G:;; ; ,:_I] 

1 
(3.21) 

- ; qq’k-dGt+l + G+) + W(GL+l + Gt-)I 
1 

and +“( fi, /“Q, $J”-( >h,>i) may be obtained from the rule: 

Under (3.22) 

By analogy with (3.14) we can define the helicity matrix (X’ 1 3 1 X) for process 
(II),and{iJ (i = 1 ... 6) the corresponding amplitudes in states of fixed angular 
momentum. This is done in Appendix A. 

IV. APPLICATION TO THE SECOND RESONANCE IN 
PION-NUCLEON SCATTERING 

In this section we shall apply the above formalism to investigate further the 
mechanism for the second resonance in pion-nucleon scattering proposed by 
one of us (1). Even though the result of an approximate calculation throws 
considerable doubt on the magnitude of the resonance effect produced by the 
mechanism we shall nevertheless present the calculation, since it involves fea- 
tures which are absent with elastic scattering and is, therefore, of some formal 
interest. 

The mechanism for the resonance depended on the diagram, Fig. 9(a). The 
corresponding diagram before the isobar approximation is made (Fig. 9(b) 
contributes a term to the unitarity condition which was not present for the 
process a + N --f ?r + N* discussed in Section II, and which is not, in fact, in 
the isobar form. The transition amplitude F thus has an extra term 

P2 
(~12 - M2 + iA)(sds - W + iA)(u - rn’ + ie) 

(4.1) 
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FIG. 9. Single-nucleon pole contribution to process (II). 

where u = (pl + p, - p6)‘. We shall neglect spin for simplicity. On using the 
usual relation between s, t and U, this becomes 

P2 
-(SE - M2 + iA)( 

(4.2) 
~45 - LIP + iA)(s + t - 812 - ~45 - 2p2 + m2 - ie) . 

It is important to observe the -ie instead of +ie in the last denominator, 
owing to the reversal of sign in the relation between s and U. Thus the region of 
interest in the s-plane is below the cut due to the term (4.2)) whereas it is above 
all other unitarity cuts. This squeezing of the amplitude between two cuts is a 
phenomenon which is known to occur for processes with six or more external 
lines (10). 

The term (4.2) is not of the required resonance form, as it depends on s12 
and sd5 through the last denominator as well as the first two, and this is a strongly 
varying function in the region of interest. We shall therefore have to separate 
from it the “isobar” contributions. This will be done by observing that, in all 
the unitarity integrals, (4.2) will be multiplied by the complex conjugate of a. 
scattering amplitude involving three particles. If it is of the isobar form, it will 
depend strongly on s12 or s45 only through factors of the form 

( s12 - Al2 - iA)-’ or (Sag - &I* - ;A) -‘. 

We must therefore find a function which, multiplied by these two factors and 
integrated over s12 and s45 , will give the same result as (4.2) multiplied by these 
factors and integrated over s12 and sJ5 . It must also depend on s12 and sqj only 
through the resona,nce denominators. Such a function is 

P2 
- (~12 - h.? + iA) (84, - J!P + iA) (s + t - 2M - 2iA - 2/.? + m’) 

(4.3) 

so that, according to the theory of Section II, the expression corresponding to 
Fig. 9 (b) will be 

G2 - 
(s + t - 2M2 - 2iA - 2p2 + m.2) 

(4.4) 
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In other words, it could have been obtained by putting the squares of the masses 
of the external lines in Fig. 9(a) equal to M2 + iA, and calculating the diagram 
in the usual way. We shall assume that this prescription is also valid when spin 
is included. It is evident that the 2iA in (4.4) must have a negative sign, cor- 
responding to the negative sign before the ie in (4.2)) since the approximation 
must preserve the fact that the region of interest is below the singularity. The 
pole in (4.4) will thus be in the physical sheet, and will be a finite distance above 
the real axis. It will thus produce a spreading out due to the width of the pion- 
nucleon resonance. 

One can now isolate a fixed partial wave, and the pole in (4.4) will become 
spread out into a short cut in the usual way; the cut is now in the upper half- 
plane on the physical sheet. If we further include intermediate pion-isobar 
states in the unitarity condition, but neglect pion-nucleon states to begin with, 
there will also be a cut on the real axis given by 

d(F) = kF*F. (4.5) 

The expression d(F) represents the discontinuity in F, which is no longer equal 
to the imaginary part; k is a kinematic factor which depends on the spin. It is 
therefore necessary to find a function F with a known cut in the upper half- 
plane, and a cut given by (4.5) on the real axis. This is a problem which can 
be transformed by the N/D method to the solution of an integral equation. 

We shall, however, make some simplifications so as to give an exactly soluble 
equation. First let us replace the cut in the upper half-plane by a pole which, 
with suitable choice of position and residue, should be possible without great 
loss of accuracy. Thus, the contribution of Fig. 9 to F will have the form 

N(s) = 
7-r 

ko(s - N2 - ir) (4.6) 

where k. is the value of k at s = N2. Further, we shall replace k in (4.5) by k, , 
which should be accurate if the resonance is narrow. Thus 

d(F) = Zik&‘*F. (4.7) 

The problem of finding a function (F) with a pole given by (4.6) and a cut along 
the real axis given by (4.7) can now be solved exactly. The result is 

F(s) = N(s)lD(s) (4.8) 

where 2 . 
D(s) = 1 + (1 _ 4;;1,r + l 1 I ;z ; ;; ’ Ims>O 

s - N2 - ir 
(4.9) 

= ’ + (1 - 4$ + 1 s - N2 - ir(l - 4~)‘)~ ’ Im s < 0. 
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This solution is only valid if r < x, but it may easily be checked that (4.6) 
and (4.7) are incompatible above this limit. Our isobar model must therefore 
break down before r reaches the value x. 

If we now turn to the reaction ?r + N -+ x + N*, but still keep only pion- 
isobar intermediate states, we obtain an Omnes-type equation. With the ap- 
proximation that D is constant except near S = N’, which is accurate if the 
resonance is narrow, the effect of the pion-isobar intermediate state is to multiply 
the other contributions to this amplitude by a factor 

B(s) = (1 - 4rP2 + 1 + 2r D-l 
(1 - 4r)“2 + 1 

(4.10) 

The constant factor in (4.9) has been chosen to make B equal to 1 when S is 
far from N’. 

We may observe that the first expression for D in (4.9) has a zero when 

s = N2 _ ir (1 - 4rY + 1 + 2r 
(1 - 4r)‘j2 + 1 - 2r. 

(4.11) 

This is on the unphysical sheet and therefore indicates the presence of a true 
resonance. However, if the value of r in (4.9) is much below >i, B(s) will not 
be very large at s = N2, so that unless the amplitude for the reaction ?r + N --+ 
?r + N* was large to begin with, the effect will not be very great. Of course, we 
have consistently neglected the TN intermediate state in the calculations. This 
state could be included at the cost of increasing the complication of the results. 

If we take account of spin using the formalism of the previous section, formula 
(4.4) is replaced by 

-G2 (7.Q + m + MN&A Q, - KA K, - (&AK, - KA &,)I 
(s + t - 2M2 - 2iA - 2$ + m2) . (4’12) 

We have calculated the contribution of this term to the various helicity ampli- 
tudes bJ (X, X’) . To give an idea of the sizes we quote in Table I the values of 
their imaginary parts at s = 120~’ which would be the position of the peak in 
the model neglecting spin discussed above. Note that the numbers quoted must 
be multiplied by isotopic spin factors of g’, - s, and 1 in the T = $5, 35, and 
35 states respectively (see Appendix B2) : The signs quoted are such that a 
positive sign corresponds to an enhancement in the isobar production amplitude 
(i.e., positive r). 

The simplest contribution to the amplitude for ?r + N + 7r + N* is the pole 
contribution of Fig. 10. This contributes a term of the form 

2 The extra factors of 2 (process II) and & (process I) come from the differences be- 
tween the coupling constants for different charge states: g is defined as the coupling con- 
stant of a neutral pion with a nucleon, while G is the coupling constant for a positive pion 
and proton to form an isobar. 
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TABLE I 

SINGLE-NUCLEON POLE CONTRIBUTIONS TO PROCESS (II) 

Contributio~oofIm(pole) J = W-t J = %- J = N+ J= pi.-. J = N+ J = x-e 

rJ*(w, WI 0.95 -0.48 -0.11 0.40 0.45 0.01 

.v*E!, , 34) - -0.05 0.35 0.31 0.00 

i-‘*(Bi, 36) - - -0.46 -0.02 0.32 0.00 

egG YEJY-Q + CM + m>,‘2>(Qh + Kx) 
(s + t - M2 - iA - 2/Z) 

(4.13) 

which is smoothly varying in the physical region. The contributions of this 
term to the helicity amplitudes are given in Table II. The isotopic spin factors 
are in this case 22/ g for T = 3-i and - fi for T = 56 (see Appendix B’). 

V. CONCLUSIONS 

The discussion of Section IV shows that if we consider the scattering of scalar 
pions from spinless isobars (formed from scalar pions and spinless nucleons) 
there is indeed a singularity in the upper half energy plane on the physical sheet 
for the partial wave projection of the process of Fig. 9 which should produce a 
maximum in this elastic cross section. We have further written down an ampli- 
tude which has a singularity in the appropriate region and which, for values of 
the energy near the maximum, satisfies an approximate unitarity condition in 
which intermediate states of pion plus nucleon and pion-pion isobar plus nucleon 

FIG. 10. Single-nucleon pole contribution to process (I). 

TABLE II 

SINGLE-NUCLEON POLE CONTRIBUTIONS TO l'~oc~ss (I) 

Contribution of 1 pole 1 
to J= >$+ J= >s- J= W+ J= N- J= 3$+ J = x-m 

ti*wi, %I 0.62 0.21 0.20 0.07 0.02 0.05 
ti*wi, 35) - - 0.35 0.07 0.03 0.15 
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are neglected. This takes the form of multiplying the expression (4.2) describing 
the process of Fig. 9 by a denominator which enhances or suppresses the maxi- 
mum depending on the sign of the residue in (4.2). When we consider the full 
problem of the actual pions and nucleon with its full spin dependence we find 
expressions for the term analogous to (4.2) for the eigenstates of angular mo- 
mentum, parity and isotopic spin and observe t,hat for the T = fh, J = 9; 
state the residue is positive, which would indicate an enhancement in the simpli- 
fied problem. Enhancements should also be expected in a number of other states. 
If we make t#he same approximations in the unitarity condit,ion and consider 
the inelastic scattering into the pion plus nucleon channel, then there appears a 
“resonance” corresponding to the elastic maximum, but it is quite small in its 
effect. In view of the rather drastic approximation made for the unitarity con- 
dition, we cannot draw any firm conclusions about the validity of the mecha- 
nism as an explanation of the second resonances. However it is clear that with 
the formalism of this paper it should be possible to attempt a more accurate 
solution of this problem. In particular it is interesting to note that for the 
T = 5/i state, the unitarity condition we have used should be exact in the neigh- 
borhood of the maximum. Thus even a limited extension of our present calcu- 
lations may be susceptible to experimental test’. 

APPENDIX A. CALCULATIOK OF HELICITY AMPLITUDES 

Relations (3.21) for the four helicity amplitudes for process (I) may be ob- 
tained as follows: Define operators 

CC-y3) = 
-y-q3 + M 

l/%@,I + Ml 
(A.1 > 

in spinor space, and 

CR = cos O/2 + iu2 sin O/2 

fl ‘i 
L=i 1 

I 
E,‘/M -iy/M 
G/M Et/M, 

f cos 8 sin 0 1 

R= 

! 

1 
-sin 8 cos e 

1 I 

(A.2) 

(A.3) 

in four-vector space. (We use a positive definite metric with four-vector (ia, ao) . 
Then the leading (2 X 2) minor in spinor space and the “space part” in four- 
vector space, XL’, of 

[~:(-YP~)~II[RLI~~~[~:(~~)I (A.4) 
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give the elements of the T-matrix between a Pauli spinor on the right and a 
nonrelativistic spin - F/i wave function in the uncoupled representation 

1 + l/a = 3/2 (A.5) 

on the left. The initial and final wave functions are quantized along the direc- 
tions of pl and -q2 respectively. The helicity matrix is then given by 

where 

,o 10, 

and A is just a matrix of the vector coupling coefficients of (A.5) : 

(-4.6) 

(A.7) 

(A.81 

with cr = 

(A.6) we get 

Carrying out the matrix multiplication of (A.4). 

1 q’W 

where G1*, Gz* are expressed in terms of the invariant amplitudes by (3.17)) 
(3.18). Equation (A.9)) manipulating the rotation matrices of (3.15) in terms 
of Legendre polynomials, yields (3.21). 

In the same way, we can define the matrix 

[SC -1)3)~lI[RLlT311[Ll[d:(pl)l (A.10) 

for process (11). The leading (2 X 2) minor in spinor space and the “space-space” 
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submatrix in four-vector space, W of (A.lO) gives the T-matrix elements be- 
tween nonrelativistic spin - 34 wave functions in the uncoupled representation. 
We then have: 

c= cw (BA)+sTI’(BA) 

which gives : 

*~ir4=~{~S*f)(~H~*aK,) 

-ggs 
[ 

&(l +c>+LlI, 1 (FH2 f sKz) 

(A.11) 

. C ;p2s2 - ;f$ ~'(1 + c') - %&!p2 - +%p2 1 (cH2 qz $K2) 
-6 E,C+ 

( > 
(E,+2w,)(~Hz~sKz) (A.12) 

- ;p2 
[ 

;S2 - g (1 + C”) 
I 

(cH3 =F sK3) 

- g2 Ep2C(cH, f SKz) - z S(sK1 f FH1) 

+ ; 2 p2XC(SK2 ?= cH2) + ; 2 p2S( sKD =I= cH3) 

1E 
+ - -z’ p2S( sK3 =F 

2M 
cH3) 

l-5 f {s = ; (FHI f ZK,) + ; C’(FH~ =F sK1) 

+ $ p2S2[E(H2 - H3) f  S(K2 - KS)] 

where {I . . . t4 are defined in analogy with Eq. (3.15) and ps , l6 by 

i-6 = (35 I 3 I %> = & 7 @J fl){sJ &3,2(e) 

i-6 = (-34 1 < 1 %> = & 7 (2J + l&-t &Z-3,2(6). 

(A.13) 
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In Eq. (A.13)) we define H, , Ki by 

Hi cz $ ( ci + ?” -&’ - lJ2 Di) 

x 

> 

(A.l-l) 

and s, c, S, c now refer to the angIe of scattering in process (II). The combina- 
tions of definite parity are 

!r”‘(%i PC9 = TIJ f c‘lJ 

r”‘f42 $6) = .bJ f &tsJ (A.15) 

r”*oi M = i-sJ f lGJ 

where the (+) sign is associated with parity ( - 1) ‘+I”. Then, defining the 
combinations of Legendre polynomials 

x, = pn+z - pa 
2n + 3 

y 
n 

= (n + 2)P,+2 + (n + l>P, 

2n + 3 
(A.16) 

Zn = (n + 2)Y,, + ~Yw, , 
the formulas for the helicity amplitudes of Eq. (A.15) may conveniently be 
expressed in terms of the integrals 

P$& = (HI f ( -l)n-lK1)P, dC 

Ph = p2 j’ (Hz f (-l>“-kz)P, dC 
-1 

(A.17) 

P& = p2 /’ [(Hz - Hz) f (-1)“~‘(Kz - Ks)]P, dC. 
--I 

where 1 = J - 45 and the integrals Xi, , Yi, , Zi, (i = 1, 2, 3) are obtained by 
substituting 

P, + x, , yn , zn 

in Eq. (A.17). The formulas are 

s”+M xi (X, - x,z-1,) - g$ Lx, + -G-l,) 

-- SE; (x, + x;cI--ljj I -f; (“” - Xh--2~ + “““;1 ;;k-lj) 
21 + 1 

+ L x;z - xzcz-2, 
16 21 + 1 

+ X~z+o - x,z-1, 

21 + 3 > 
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(A.18) 

-2 ;+g z:,-;~z;-~z~-&;~ 
( > 

- ; (; + g) [g3 w&i+l, - YL,) 

- kl (G - YLd] 

+ 2 [s3 ( Yb+l, - YL-1)) + & ( Y& - YL2,)] 

s”+(3,$, 34’2) = p{Ji [-Xi-z + $5 Y, + Wll) 
- tx1(1-1) - Y&-l) + ~1(2+1))1 

1 
-16 [ 

(1 - 1)Yh + (I + W&2--2) + IY&+1, + (1+ 3X&I, 
21 + 1 21 + 3 Ii 

and the other three equations follow from the rule: 

[J+($‘i $5) ---f -<J-(46 35) 

Under w-+-w, r”fpi f$ -+ r”(fi 45) (A.19) 

rJ+( “i 34) -+ cJ-( 35 Fi). 

Finally, we quote the relations between the 4iJ, [iJ and the elements of the 
T-matrix between states of definite orbital angular momentum. These are, with 
1 = J - >‘i, 
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S~Z41)(Z-1) = - 

for process (I), and 

T:(z+2) = T:z+z,z = - d3z(z + 2, sJ-(>s 34) 

4(J + 1) 

- 

T:z-1) (z,-1) = P dmm J+ l/l, 
(Zfl)(Z-1) = - 4J r (/2 12) 

T<Z-1, (Z-1) 

+z+2 
4J tJ+(% 34) 

43z(z + 2, [J-(14 34) 

(A.21) 
T” (z+z)(z+2) = w + 1) ’ 

Z 
+ 4v + 1) 

l”-(% 34) 

~- 
Z 

T;z = 4(J + 1) 
{“(g yj) + xm + 2) {“(M 35) 

f-w + 1) 

+ 4(J + 1) 
3(1+ 2) f-(35 35) 

T:z+I)(z+~) = qg r"+oS 45) - da-3 [“+(>4 35) 2J 

for process (II j . 
+ 4v + 1) 

3z TJf(N %I 

APPENDIX B. ISOTOPIC SPIN CROSSING RELATIONS 

Consider some scattering reaction 

A+B-+C+D (B.1) 

described by a transition matrix YE, and the corresponding crossed reaction 

G+B-&+D 03.2) 
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described by a transition matrix X. In this appendix we shall be concerned 
solely with the dependence on isotopic spin, which we shall call simply spin, 
as there is no ambiguity. 

Let the spins of particles A, B, C, D be a, b, c, d and let (Y, ,k?, y, 6 be the z-com- 
ponents. We shall use the convention that a denotes spin a, x-component 01, 
while Q denotes spin a, z-component -a, and omit the explicit z-components 
wherever possible. The matrix element of M corresponding to a particular 
charge state may be expanded in terms of matrix elements corresponding to 
given total spin e (z-component E) : 

(4 I ~JK I ~6) = c (ab I e)(e I cd)M, 03.3) 

where M, = (ee 1 312 1 es) is independent of E by charge independence. 
Similarly 

(-rP I 51 I -4 = z @b I f)(f I add)Nt (B-4) 

where f, 4 are the total spin and z-component for reaction (2). We note that 

(ab I e) = (e I ab) = C(abe; a&c) etc. 03.5) 

are simply Clebsch-Gordan coefficients. 
Now we introduce the crossing assumption which is that if A and C are identi- 

cal particles (implying a = c) 

(4 I~Ir@ = (-lY+‘(-rP I 37. I -4 P3.6) 

provided that corresponding momentum and angular momentum states are 
considered. The factor ( - 1) a+y comes from the behavior of spin states under 
time-reversal. Next we use the result 

F lab I e>W I e> 
= (Se + 1) z ( -1)2’-b-d-*-yW(abd~; ef) (Fb If)@d if) (B.7) 

where W( ) is the Racah coefficient. Now inserting (7) into (3) and then 
(3) and (4) into (6) we immediately obtain 

(aI (&A (cl 
FIG. 11. Diagrams corresponding to process (B.1) and (B.2). 
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Nf = (-1)2f-b-d C (2e + l)W(abdc; ej)Me 

= F (-l)e-ii2e + l)W(aejc; bd)M, = C X,/M,, 
e 

X,f = (-l>“-j(2e + l)W(aejc; bd) 

VW 

where X,, is the desired crossing matrix. 
The occurrence of the Racah coefficient in this result can easily be understood 

if we consider the amplitude 44, to be described by the diagram of Fig. 11 (a). 
The corresponding crossed amplitude is represented by (b). X,, is then the 
contribution of diagram (b) to the state of total spin j. This is simply the overlap 
between the two ways of combining the three particle intermediate state 
(ti e F) to total spin j, with either (Z + e -+ b (initial state) or F + e + d 
(final state) as indicated in Fig. 11 (c) . But this is essentially the definition 
of the Racah coefficient W(aejc; bd) which is equal to Xaf apart from trivial 
factors. 

The two cases we are concerned with are 

(1) TN + TN*. u=c=l; b = 46, d = 35. e, .f = Pii 35 

x, cz 1 
( 

4 -vTcl 

6 -2fi -4 > 

(2) TN* -+ TN*. 

CR.91 

(B.lO) 
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